The Schiaparelli lander descending to Mars on October 19.


Updates from ESA’s space operations centre as the ExoMars Trace Gas Orbiter approaches and enters orbit around the Red Planet, and the Schiaparelli module lands on its surface.

Updates on this page will cover the following expected milestones:

14 October: TGO final trajectory manoeuvre (08:45 GMT)
16 October: Separation of Schiaparelli from TGO at 14:42 GMT / 16:42 CEST 
17 October: TGO orbit-raising manoeuvre at 02:42 GMT / 04:42 CEST
19 October: TGO Mars orbit insertion and Schiaparelli entry, descent and landing on Mars (atmospheric entry expected 14:42 GMT / 16:42 CEST, landing 14:48 GMT / 16:48 CEST)
20 October: Update on Schiaparelli status; descent images expected 
21+ October: Schiaparelli status reports until end of mission
Note: Times shown above are actual event times at Mars; the one-way signal travel time between Earth and Mars is currently just under 10 minutes.

The events of 16, 19 and 20 October will also be livestreamed here, all other events will be reported on this page and via Twitter from @esaoperations, @ESA_ExoMars, @ESA_TGO and @ESA_EDM, and via the hashtag#ExoMars.

Credit: ESA/ATG medialab / NASA/JPL-Caltech/SAM-GSFC/Univ. of Michigan.

On Wednesday, October 19, the ExoMars 2016 entry, descent and landing demonstrator module, named Schiaparelli, will land on Mars in Meridiani Planum not far from the Opportunity rover. The map shows the seven rovers and landers that have reached the surface of Mars and successfully operated there. The background image is a shaded relief map of Mars created using data from NASA’s Mars Global Surveyor spacecraft.

Artist’s impression showing Schiaparelli separating from the Trace Gas Orbiter and heading for Mars. The lander is named for late 19th century Italian astronomer Giovanni Schiaparelli, who created a detailed telescopic map of Mars. The orbiter will sniff out potentially biological gases such as methane in Mars’ atmosphere and track its sources and seasonal variations. Credit: ESA/ATG medialab.

This image illustrates possible ways methane might get into Mars’ atmosphere and also be removed from it: microbes (left) under the surface that release the gas into the atmosphere, weathering of rock (right) and stored methane ice called a clathrate. Ultraviolet light can work on surface materials to produce methane as well as break it apart into other molecules (formaldehyde and methanol) to produce carbon dioxide. Credit: NASA/JPL-Caltech/SAM-GSFC/Univ. of Michigan.

This artist’s view shows Schiaparelli, the entry, descent and landing demonstrator module, using its thrusters to make a soft landing on Mars on October 19. Credit: ESA/ATG medialab.

Posted by starmaker 꿈꾸는 밤하늘

댓글을 달아 주세요